Vaguely Quantified Rough Sets
نویسندگان
چکیده
The hybridization of rough sets and fuzzy sets has focused on creating an end product that extends both contributing computing paradigms in a conservative way. As a result, the hybrid theory inherits their respective strengths, but also exhibits some weaknesses. In particular, although they allow for gradual membership, fuzzy rough sets are still abrupt in a sense that adding or omitting a single element may drastically alter the outcome of the approximations. In this paper, we revisit the hybridization process by introducing vague quantifiers like “some” or “most” into the definition of upper and lower approximation. The resulting vaguely quantified rough set (VQRS) model is closely related to Ziarko’s variable precision rough set (VPRS) model.
منابع مشابه
Fuzzy-Rough Nearest Neighbour Classification
A new fuzzy-rough nearest neighbour (FRNN) classification algorithm is presented in this paper, as an alternative to Sarkar’s fuzzyrough ownership function (FRNN-O) approach. By contrast to the latter, our method uses the nearest neighbours to construct lower and upper approximations of decision classes, and classifies test instances based on their membership to these approximations. In the exp...
متن کاملA New Approach to Fuzzy-Rough Nearest Neighbour Classification
In this paper, we present a new fuzzy-rough nearest neighbour (FRNN) classification algorithm, as an alternative to Sarkar’s fuzzyrough ownership function (FRNN-O) approach. By contrast to the latter, our method uses the nearest neighbours to construct lower and upper approximations of decision classes, and classifies test instances based on their membership to these approximations. In the expe...
متن کاملOrdered Weighted Average Based Fuzzy Rough Sets
Traditionally, membership to the fuzzy-rough lower, resp. upper approximation is determined by looking only at the worst, resp. best performing object. Consequently, when applied to data analysis problems, these approximations are sensitive to noisy and/or outlying samples. In this paper, we advocate a mitigated approach, in which membership to the lower and upper approximation is determined by...
متن کاملFuzzy-rough nearest neighbour classification and prediction
In this paper, we propose a nearest neighbour algorithm that uses the lower and upper approximations from fuzzy rough set theory in order to classify test objects, or predict their decision value. It is shown experimentally that our method outperforms other nearest neighbour approaches (classical, fuzzy and fuzzy-rough ones) and that it is competitive with leading classification and prediction ...
متن کاملOn $L$-double fuzzy rough sets
ur aim of this paper is to introduce the concept of $L$-double fuzzy rough sets in whichboth constructive and axiomatic approaches are used. In constructive approach, a pairof $L$-double fuzzy lower (resp. upper) approximation operators is defined and the basic properties of them are studied.From the viewpoint of the axiomatic approach, a set of axioms is constructed to characterize the $L...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007